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Introduction

M.1I. Freidlin ([9], [10]) has recently introduced probabilistic
techniques into the study "wavefront propagation" for systems of reaction-
diffusion PDE. The motivating idea is that should a reaction-diffusion system
possess only a single unstable and a single stable equilibrium, then the
solution u of the system will presumably tend to "switch" for large times
from near the former to near the latter state. A mathematical problem is then
to describe this transition, ideally in terms of simpler quantities than those
governing the full, detalled behavior of the entire system of PDE. More
precisely, to study the reaction-diffusion problem for large times of order
e-l, Freidlin suggests a c-l rescaling in the space and time variables; so
that our attention turns to the solutlons ue of certain e-dependent systems
of PDE. We then hope to show that as € — 0, the functions u€ converge in
some region G ¢ R" x [0,m) to the stable point, and in the opposite region
[R® x [0,®)]\G to the unstable point. We simultaneously hope to describe
geometrically or analytically this set G, whose boundary we envision as a
spreading wavefront separating regions with quite different 1imiting behavior.

This paper, which is an extension to systems of earlier work [6] on
single equations, brings to bear purely PDE techniques to this problem,
especially the theory of viscosity solutions on Hamilton-Jacobl equations,
due to Crandall-Lions [3]. The connection with the foregoing discussion is
that, the region G alluded to above is the set where the solution J of a
certain Hamilton-Jacobl equation is negative. Our procedure for understanding
the limiting behavior of the solution of the reaction-diffusion system of PDE
is thus first of all to build an appropriate Hamiltonian H out of the data
given in the problem, second to solve the resulting Hamilton-Jacobl equation
for J, and last to demonstrate the different limiting behavior of the

scolutions u® of the scaled system on the sets {J<0} and {J>0}. We




informally regard the Hamiltonian as controlling somehow the rate of instabl-
lity of the unstable point. We are thus able to characterize the asymptotic
behavior of the "complicated"” reaction-diffusion system in terms of the
"simple” Hamilton-Jacobi equation. Thils possibility, first ldentified by
Freidlin [9] in rather different terms, is attractive, but of course requires
for this implementation many structural assumptions on the nonlinearitlies,
vhich we list below. It would of course be quite interesting to extend our
results, or at least the point of view espoused above, to systems with more
general nonlinearities.

More precisely now, we intend to investigate the scaled reaction-

diffusion system:

£ _ > 1 € n

Wy = edkAuk * oz fk(u ) in R x (0,»)
(1.1)8

ui =8 on R" x {0} (k=1,+++,m).

Here the constants dk (1sk<m), and the functlons
g: R 5 R™ and f: R™ — R",

are given, where we write g = (gl,---.gm), f = (fl,---,fm). The unknown is
uf = (ui,--~,u;). We will assume that

q >0 (k=1,¢++,m),

and that the functions g, f are smooth, bounded and Lipschitz.

In addition we suppose that

(1.2) 8, 20 (k=1,+++,m)
and
(1.3) GO = {gk > 0} (k=1, ¢+, m)




is a bounded, smooth subset of Rn. Under these assumptions there exists a

unique smooth solution u® of the PDE (1.1)2. with

u; >0 in R" x (0, w) (k=1,+++,m).

Our essential assumptions all concern the reaction term f. First of
all we suppose
(F1) f(o) =
and also

fk(ul,0'-.uk_1,0,uk+1.~-‘,um) >0 if

(F2)

LICRARTE WIPEL NUPPRLLIL W 0 and u, >0 for some index 1=k.

Consequently the vector vield f polnts strictly inward along the boundary

of the positlivity set

M= {ue Rm|u1>0,---.um>0}.

except at the point 0, which is an equilibrium point for the system (1.1)9.
To ensure that our solutions ue do not become unbounded as ¢ — 0, we

further hypothesize that

there exists a constant A such that

(F3) fk(u) <0 (k=1,¢¢+,m).
iIf uell and uk 2 A.
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Figure 1

Next we set forth additional hypotheses which imply that the rest point

0 1is unstable. Let us define the m x m matrix

C = Df(0),

Df denoting the gradient of f. Thus

1 = fk.ul(O) (1sk, 1sm).
We assume
(F4) k1 >0 (1sk, 1sm),
and
(F5) fk(u) < Y (uell, k=1,+¢¢ m),

where we employ the standard summation convention.




for systems of the Kolmogorov-Petrovskii-Piskunov nonlinearity, discussed in
(6].

Our main result, Theorem 1, asserts that under hypotheses (F1) - (FS)
ue(x,t) converges as € — 0 to zero or not depending on whether J(x,t) > 0
or J(x,t) < 0, the function J satisfying a Hamilton-Jacobl PDE whose

structure we now describe. Given p € Rn. define the m x m matrix

B(p) = diag(oo.. dklplz..ot)
and then set

(1.4) A(p) = B(p) + C.

Now the matrix A(p) has positive entries, and so Perron-Frobenius theory
asserts that A(p) possesses a simple, real eigenvalue Ao = AO(A(p))

satisfying

Re A < Ao

for all other eigenvalues A of A(p). Let us define then the Hamiltonlan
0 n

(1.5) H(p) = A (A(p)) (peR).

See, for instance, [7] for a review of the various properties of H, and in

particular a proof that H 1Is convex. We additionally set

(1.86) L(q) = sup_ (p*q-H(p));
m
peR

L is the Lagrangian assoclated with H. Filnally we define for each point

(x,t) € R® x (0,») the action function

t
(1.7) J(x,t) ® inf { [ Liz(s))as|z(0) e Gy, 2(t) = x},
0

the infimum teken over all absolutely continuous functions

z: [0,t] > R




satisfying the stated initial and terminal conditions. As we will see, J

turns out to be the (unique) solution of the Hamilton-Jacobi equation

J, + H(DJ) =0 in R” x (0, )
(1.8) J =0 on GO x {0}
J =+ 0 on lnt(Rn-Go) x {0}

in the viscosity sense (cf. Crandall-Lions (3], Crandall-Evans-Lions (21,

etc. ).

Theorem 1. Under hypotheses (F1)-(F5) we have

(1.9) 1im u€ =0 uniformly on compact subset of {J>0}
€0

and

(1.10) 1im inf uf > 0 (k=1,+++,m) uniformly on compact subset of {J<O}.
u

€-0

We loosely interpret this theorem as describing how the Hamiltonian H,
which depends upon both C = Df(0) and the diffusion constants dl"."dm‘

controls the instability of the equilibrium point u = 0.

Remark We should note also that it is possible to reflne conclusion (1.10)

by making further assumptions on the behavior of the vector fleld f in 1.

As in Freidlin [8], we may for instance assume that there exists a unique
equilibrium point a € T which is asymptotically stable for the flow

generated by the vector field f, as in the following 1llustration.
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Figure 2

Under various fairly stringent technical assumptions, it is then possible to
show that

(1.11) 1im u& = a uniformly on compact subsets of {J<O}.
€30

We may consequently think of the boundary of the set G = {J<0} as a
"propagating wavefront" in the sense explained above.

Assertions (1.9), (1.11) are attractive, but the sufficient conditions
we know to improve (1.10) to (1.11) are rather unsatisfactory technically.
{For instance, we could assume that the diffusions constants are all equal and
that f has a convex Lyapunov function associated with the stable point a,
etc.). For this reason, we will not here formulate any precise assertions
leading to (1.11), but instead refer the reader to Freidlin [9], [10] for
more information on this point. o

Our paper is organized so that the proof of Theorem 1 appears in §3, §2

being devoted to some preliminary estimates. The main idea, following (8],




——T

is to perform a change of variables, after which we send € — 0. This approach
is greatly complicated for the present case of systems, since we lose the
maximum principic and consequently many of the estimates avallable in [6] for
the scalar case. We depend instead upon some recent techniques introduced by
Ishii [11]) and Barles-Perthame (1] in Hamilton-Jacobl theory, which allow us
to proceed with only supremum-norm bounds. This is a great advantage since
better estimates seem to be unobtainable, but the price is a far greater
intricacy in some of the convergence proofs. We will encounter for instance
troubles in interpreting in Just what sense certain solutions take on their
initial values. An appendix (§4) develops some useful theory on such
questions, which we will need iIn §3.

Finally we let us note that although Freidlin's work has greatly inspired
us, we believe that the PDE techniques develnped here (and in [{6]) provide
information which is not at all clear from the probabilistic viewpoint. We
for instance do not require the fairly specific structural assumptions on the

nonlinearity f wutilized in [9, p.467].




2. Preliminary estimates

Henceforth we always suppose hypotheses (F1)-(F5) to be in effect.

Lemma 2.1 There exists a constant C1 such that

(2.1) 0<usc __~in R" x (0,0)

e

for k=1,+++,m and each e >}7f'

Proof. Choose a smooth, bounded, Lipschitz vector fleld

?: Rm —_ Rm
such that
fu) = £(u) (ueiDd
(2.2) and
fk(u) 20 : If u <0, kel,*+,m;

this is possible in light of (F2). Now let {° be the unique, smooth

solution of the systenm

&, = e alf + é 8% 1n " x (0,m)
(2.3)
€
& = &, on R® x {0}.
Choose
n: R—R
to be smooth and convex, with
n=20 on [0,®)
(2.4)
n>0 on (-®,0)
Then for each k=1, - a,
10




-

:_t I nn[ e]dt =-c fRndkn”[u;]lDuilzdx

i

= f n’{ c]f‘k(uc)dx
R"

S0, by (F3).

—
g

,,nfgiiax =0,
Rn

Since

we discover
u; s 8 in R" x [0, ).
3. Observe now that hypotheses (F1), (F2) and (F4) 1imply fk(u) 20 if

u; 2 0 1s small enough (k=1,+¢+,m). Thus the strong maximum principle for

parabolic equations implies

u; >0 in R x (0, w), (k=1,+++,m) o.

We next introduce, following (S], (6], [7], [8], etc. the new functions

€ _ _ € n 21 oo
P (2.5) Vi = clog u in R x (0,e) (k=1, ,m).
A calculation shows that vE = (v?,---.v;) satisfies the system
[ £, (u®)
€ € €,2 k n
k.t edkAvk + dklnvkl = in R x(0,®)
€
(2.8)c J Vi - ¢ log g on Go x {0} |
v = + o on int(R™G.) x {0}.
| Yk 0
Note also that in view of Lemma 2.1 we have
(2.7) v: 2 - ¢ log C, in R™ x [0,w)




for k=1,+**,m and each ¢ > O.

Lemma 2.2 For each compact subset Q ¢ ¢ (R™(0,m)) v (G0 x [0,w)) there

exists a constant Cz(Q) such that

€
|vk| < CZ(Q) in Q
for k=1,»,m and each € > O.
Proof 1. Let O denote any open subset of R" x (0,»). Suppose that ¢ 1is
a smooth function satisfying
2
(2.8) ¢, - edkA¢ + dk [Dg|” 2 A in O,

where A > 0 1s a positive constant to be selected later. Assume now that

v§—¢ has a maximum at some point (xo,to) € 0. Then at the point (xo.to) we

have

£ €

0 s [uk-¢]t - cdkA[vk— ]
fk(ue)
- — - A by (2.8)e and (2.8).
Yk

But

c = - LN ] e c [ W 3 1

- £ (u) = - f (oo u 1,0, U 00)

€ € € € €
' [fk(""“k-l'o' Uagr ") —&(""“k-l'“k'“kn'“)]
sC u; , according to Lemma ?.l and (F2).

Substituting above we discover
L ]

0<C-a,

13




a contradiction for A large enough.

2. We may assume that for some r > 0 the ball B(O,r) lies in Go. Set
then

1 1
¢ m —— + Bt + 7 (|x|<r, t20)
ro-|x|

B and 7 picked as indicated below (cf. [5], [7]). We compute

o, - cd ap’ + a |Dg'|?

2 2
=B - edy 22n 7t glzl’z 3| * 9% élx N
ro-|x| (r"= x| (r"=1x{%)
2 A in B(O,r) x (0,®) {k=1,+++,m),

provided B8 > 0 1is large enough. If we then adjust 7 to be so large that

¢ 2 vi on B(0,r) x {0},

we deduce from Step 1 that

vi s ¢1 in B(0,r) x (0,@).
Consequently
(2.9) v; sC in B(0,r/2) x (0,T).

for k=1,+.m and each € >0, T > 0.

3. Now write

2
¢° = El%l— + Bt +q (}x[>5,t>0).

We calculate

2
2 _ 2 22 _ _ alx| _ 2n 4da” [x
by S4BT+ D77 = - S e B ey T e 5

14




2 A in (R"-B(0,r/2)) x (0,m),

provided «, B > 0 and large enough. We now pick 7 large enough to ensure

¢ 2 v:

on #8RB(0,r/2) » (0,T).
This is possible owing to estimate (2.9). Consequently Step 1 implies

2

v; s ¢ in (R™-B(0,r/2))x(0,T)

for k=1,¢*.m and each € >0, T > 0.

This bound and (2.9) lead at once to the estimate stated in the

Lemma. o

15




3. Proof of Theorem 1.

For each (x,t) € R" x (0,») we set

(3.1) vk,(x,t) = lim inf v:(y,s) (k=1,+++,m)
€0
(y,s)a(x,t)
and
(3.2) v;(x,t) E 1lim sup v;(y,s) (k=1, ¢+, m).
€0
(y,s)a(x,t)

We additionally write

» L]
(3.3) Ve = min v,,, vV ® max v, .

1<k<m 1<ksm

[ ]
We intend to show that v, 1is a lower semicontinuous supersolution, and v
is a upper semicontinuous subsolution, of an appropriate varliational

inequality involving the Hamiltonian H defined in §1.

Proposition 3.1. We have
(1)

(3.4) min(v,, + H(Dv,),v,) 2 0 in R" x (0,®)

*t
in the viscosity sense, and
(11)

0 on G0 x {0}

(3.5) Ve
+o on (n"-ao) x {0}.

Proof 1. Because of (2.7) it is clear that

ve 2 0.

To demonstrate that

ve, + H(Dv,) 2 0 in R" x (0,w)

t

16




in the viscosity sense, we fix a smooth test function ¢ and assume

{ ve,—¢® has a strict local minimum at some point
(3.86)

(xg1ty) € R” x (0,w).

We must prove

(3.7) ¢t + H(Dg) 2 0 at (xo,to).

2. Let (wl.---,wk) be a positive eigenvector of the matrix A(D¢(x0.t0))

corresponding to the principal eigenvalue AO(A(D¢(x0,t0)) = H(D¢(x0,t0)).

Note then
(3.8) ve(x,t) = 1lim inf  min [vf(y.s) + ¢ log wl].
-0 1€1Sm
(y,s)>(x,t)

Combining (3.6) and (3.8), we deduce that there exists an index k € {1, +++,m},
a sequence € — 0, and points (xe'.te') such that

Er| Er ,Er - €r| €r ,€r
(3.9) v [x ,t ] + e log wk = min [v Ex ,t ] te, log wl] - v,(xo,to).

k 1s1sm 1

(3.10) [v;r * € log wk] - ¢ has a local minimum at [xe’.te'],
and
(3.11) [xc’,tC’] - (xo,to) as r 5 o.

17




Applying then the maximum principle, we obtailn from (2.6)e the estimate

€r)
fk[u

€p

2
0s¢ - €.d A¢ + dk|D¢| +

(3.12)
€r
k

€r

Yk 1

-V

2
S é - oA+ 4 DS|T ¢ oy exp N

at the point [xer,ter], the second inequality being a consequence of

hypothesis (FS). Using (3.9) and (3.11), we simplify (3.12) to read

v
2 1
03¢ + dk|D¢| * o w; + o(1) as £, — 0

at (xo,to). Since
2
dk|D¢] wk + ck1 wl = (A(D¢(x0,to))W)k = H(D¢(x0.t0))wk.

we deduce (3.7) upon letting e, — 0.

3. We next verify assertion (i1). To do so, we fix u > 0 and select

¢ € C°(R") satisfying

- = n_ =
{ =0 on G, {>0 on R Go

0sC<1.

We now claim that

(3.13) max(v,t+H(Dv,),v.-uC) 20 on R" x {0}

in the viscosity sense, which means that If ¢ lé a smooth test function and

ve~¢ has a strict local minimum
(3.14)

at some point (xo.o) € R" x {0},

then either

18




(3.15) v,(xo,O) 2 u((xo)

or else

(3.186) ¢t + H(D¢) 2 0 at (xo.O).
Now if Xy € 50, then (3.15) is clearly true. Otherwise suppose
n -

X9 €e R - G0 and

V,(xO,O) < uc(xo) < o,

We repeat now the argument from Steps 1-2, noting in particular that since

v:'(x.O) =+ o for all x near Xy

the points (xe',tcr] above lie in R" x (0,m). As such the maximum principle
argument leading to inequality (3.12) is valid, and the rest of the proof

proceeds as before, yielding at last the inequality (3.16).

4, Since
vi(x,o) -0 as € — 0 {(k=1,¢¢e,m)
if xo € GO' we have
Ve =0 on Gy x {0}.
To see that
(3.22) ve =+ on (R™-G)) x {0},

choose any point X, € R" - G0 and suppose instead

(3.17) ve(x%,0) < » .

Fix 8 > 0 and then define

|x-x, |
¢6(x.t) £e-— 0 At,
3

for A = A(8) to be selected below. Since v, 1is lower semicontinuous,

18




(3.18) Ve - ¢6 has a minimum at a point (xa,ta) € R"x[0,x).
Then
2 2
%5~%o |%5=%o
(3.19) —— S v (x b)) + ———— + At S v, (x,,0) < .
L ] S 0
S L)
Now if ts > 0,
S )
¢ * H(D¢ ) 20 at (xa.ta),
whence
2(x ~x.)
(3.20) -+ H[ - ——58—0] 2 0,

a contraction for A = A(8) sufficiently large. Thus tG =0. 1If

Va(x4,0) < pElx,),

then (3.19) implies

V.(xa.O) < 1e(xg)

for small enough &, and so according to (3.13) we once more would obtain
(3.20). Thus

v.(xo.O) 2 #C(XO)-

But since C(xo) >0 and p > 0 is arbitrary, (3.17) cannot be true.

L ]
Following next is the analogue of Proposition 3.1, with v 1in place of

Ve

Proposition 3.2. We have
(1)

]

» . . n
(3.21) min (vt + HDv ),v) s0O0 in R x (0,m)

in the viscoslity sense, and

20




(i1)

. 0 on G0 x {0}

(3.22) v =
+0 on (R“-&O) x {0}.

-
Proof 1. Since v 2 0, to establish (3.21) we must show
» » L ]
vi * H(Dv ) €0 on the set {v > 0},

in the viscosity sense. So select any smooth test function ¢ and suppose

»

v -¢ has a strict local maximum at some point

(3.23) n
(xo.to) € R x (0,m),

with
»
(3.24) v (xo.to) > 0.
We need to show
(3.25) ¢t + H(D¢) £ 0 at (xo,to).

Let (¢1.°-°,wk) be a positive eigenvector of A(D¢(xo,t0)). correspond-

ing to the principal eigenvalue AO(A(D¢(x0,t0)) = H(D¢(x0.to)). Then

(3.26) v'(x.t) = lim sup max [vi(y,s) + € log wl].
€0 181<m
(y,s)a(x,t)

Combining (3.23) and (3.26), we deduce that there exists an index

k € {1,°-+,m}, a sequence €. — 0, and points (x®7,t%7) such that

L
(3.27) v;’[xe'.tc’] ‘e log ¥, = max [vi’[xe'.te'] + e log wl] — Vv (xo.to).
1S1sm
(3.28) v:'[xcr.ter] te, log wk ~ ¢ has a local maximum at [xc',tcr],

21




and

(3.29) [xe’,te'] — (xo.to) as r — o
Utilizing the maximum principle, we deduce from (Z'B)e the inequality

€
£ |u’T

k
€r

Ui

€
(3.30) ¢, - €486+ d |Dg|% s -

at the point [xer,ter]. We must now study the limiting behavior of the term

on the right hand side as r — =,
2. We assert

(3.31) u?'[xc',tcr] -0 (1 =1,¢++,m)

as r — o. To see this, note that

vc"lxer tcrl
uir [xer.tCr] = exp |- k -0,

owing to (3.24) and (3.27). This establishes (3.31) for 1 = k. Now suppose

additionally that for some index 1 = k,

1im sup uf’[xcr,ter] = a> 0.
r-o

Then passing if necessary through an appropriate subsequence
00 [ ]

{%S} < {%r} , we find
s=1 =1

fk[uc.(xe',te')] —_) fk( .OOO.a.ooo’O'o..')'

a > 0 occupying the lt'h argument and O occupying the kth argument of fk‘

22




Using hypothesis (F2), we obtain

fk[ue'[xc',te']]
lim ; =+ ©
CI [xes , tcl]

S u,
k

a conclusion at variance with (3.30). Thus statement (3.31) is true.

And indeed the exact reasoning above proves additionally

f ucr
(3.32) “e = 0(1)

r
u,
as r — o, the functions evaluated at the point [xcr,tc']. We further

refine this observation by claiming

Er €p
fk[u;J Cklul
{3.33) = + o(1)
ucr uc,
k k

as r —3 «w. To see this we observe that

2
(3.34) £ (u) = £(0) +c o u + o(|ul™)
2 m
= ¢, Y + 0(ful™) (ueR).
Now (3.31) yields
€p 2 m €r €r
ju™r| U 1Y
= o(1) < of(1)
uEr €r €
K 1=1 “k "

as r — o. Consequently (3.34) implies

€y €r
k1%
2 (1-0(1))
€r ur
Uy Kk

as r - o In view of (3.32) then
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c, .U
(3.35) ki L - o
r
Y
as r — o Since
€r) €
fk[u J ) 1%
€r €p
Y Uy

according to hypothesis (F5), claim (3.33}) is proved.
Finally note that (3.35) implies

Er
1

(3.45) = 0(1) (1=1,¢°+,m)

r

k

as T — m,

3. Owing to (3.27) and (3.33), inequality (3.30) ylelds

¥
€ 1
¢, + d  |D¢] +ck1$£50(1) as £ —
at the point (xo,to). We now conclude as in the proof of Propositicn 3.1(1)
4, Next we verify assertion (i1). We first claim
- * [ 2
(3.37) min (vt + H(Dv ),v ) S0 on GO x {0}

in the viscoslity sense, which means that iIf ¢ is a smooth test function and

*
{ v -¢ has a strict local maximum at some point
(xO.O) € GO x {0}

then either

(3.38) v'(xo.O) =0
or else
(3.39) ¢t + H(D¢) s 0 at (xO.O).
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Now if (3.38) is false, then we repeat the argument from Steps 1-3, above

noting that since

e —-—
vk(x.O) =0 for all x near X5

the points [xcr,tcr] lie in R" x (0, w). Consequently the maximum principle

arguments employed above lead us to (3.39).

5. Now observe that
» n =
vV = + on (R -GO) x {0},
since v; = + o on that set. Suppose then that Xg € GO' but
»
(3.40) v (xO.O) > 0.

Fix &8 > 0 and write

X=X
¢ = 1_3_91_ + At

L 2
for A = A{8) to be chosen. Since v is upper semicontinuous and is

bounded near xo,

»
v -¢6 has a local maximum at a point
(3.41)

(xa.ta) € G. x [0,m)

0

for each sufficiently small & > 0, with

x6 — x0 as 8 — 0.

If t_ > 0, then

S
3 3 .
¢t + H(D$") s O at (xa.ta).
whence
X.~X
(3.42) A+H{2 550] <0,
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a contradiction for A = A(8) large enough. Thus ta = 0.

Now
2
] [ ] Ixa—xol
0O<v [xo,0] Sv [xa,o] - —
owing to (3.37) we once agaln reach the contradiction (3.42). Hence (3.41)
is untenable, so that
*

v =0 on CO’

as required. a

Conclusion of the proof of Theorem 1.

In light of Propositions 3.1 and 3.2 we may invoke the uniqueness

theorems developed in the Appendix, §4, to find
n
v =v, =1 in R x (0,w),

where I 1is the unique viscosity solution of the Hamilton-Jacobi variational

inequality

min(I +H(DI),1) = O in R x (0,w)
(3.43) I1=0 on G0 x {0}

I =+ on (R“—Eo)x{O} .
Additionally,

(3.44) vi — I uniformly on compact subsets of Rnx(o,m). k=1,¢¢¢,m.

Now according to §5 1in [6], we have

(3.45) I = max (J,0),

where J 1is the unique viscosity solution of the Hamilton-Jacobl equation
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J, + H(DJ) =0 in R® x (0, )
(3.486) J=0 on G, x {0}
J=+ 0 on (Rn—ao)x{o)

In addition we have the representation formula

t
(3.47) J(x,t) = inf { I L(z(s))ds|z(0) € Gy 2(t) = x}.
o

the iInfimum taken over all absolutely continuous functions

z: [0,t] — R™.

Now since (2.5) and (3.44) imply

vi  -I+o(1)
€

u_=e =e ¢ (k=1, ¢, m),

we see that
(3.48) ui — 0 uniformly on compact subsets of {I>0} = {J>0}

as € — 0, for k=1,¢*°,m.
We must now show

(3.49) 1im inf min u¢ > O uniformly on compact subset of {J<O}.
€-0 13ksm

So fix any point (xo,to) € {J<0}. Then I =0 near (xo,to). Define

2 2
¢(x,t) & |x=x,[" + [t-t ]
Owing to (3.44) we see that for each k=1,¢+°,m.
(3.50) vi - ¢ has a maximum at a point [xi,ti] .
with
€ .c
(3.51) [xk’tk] - (xo,to) as € — 0.
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Applying the maximum principle, we find using (2.6)c that

€

2 . Fifu
(3.52) o(1) = ¢ -ed A¢ + d [D$|” s - —
u
k
and so
€ € € .€
(3.53) fk(u ) S o(1) u at the point [xk’tk] ,

as ¢ — 0.

Now there exists a constant a > O such that

(3.54) fk(u) 2 €Y a|u|2 for all u e R™ .
Let us suppose first that

‘ e[ e . k1
(3.55) ul[xk'tk] < T for each 1=1,s+++ m, 1#k.

Then from (3.53) and (3.54) we deduce

€ € € € €,2
olDu 2 f, (u7) 2 E 1Y * Sk - <ul
12k
£ ,£
at [xk,tk]; whence (3.55) implies
c

e[ e e kk

(3.56) uk[xk.tk] 2 5=

for ¢ small enough. Should (3.55) fall, then

el e ,e ckl
ul[xk.tk] > Se for some 1 = k.

But then owing to hypothesis (F2)
k € €
f (ooo“ _1'0'uk+1'...) ZB

th

at the point [xk, K

28

]. for some positive constant B. Thus at [xk,

€

] we




have

fk(ue) 2B+ fk(uc)

k € €
- f (...uk-l'o'uk-}l' o)

m
€ el2 € €
2B+ Cply 7[[“1(] * Z “k“l]
1=1
for some 7% > 0. Consequently (3.53) impliles
(s : 28+ 0f|u|| at |[xC,te
Uk "k k' k)’
and so
e [.e ¢
uy [xk.tk] 28>0
for sufficiently small & > 0. But since

€ ,€)
s

2 [v§-¢] [xo. 0] :

we have
e e ,¢€)
vk[xk'tk‘
and so
efE €
e ¥ Yk
Thus
1im inf u; [x t ] 2
€50 0’0
4. Appendix:

We outline in this section a proof that the functions v,

introduced in $3 agree and equal

min(It+H(DI),I) =0

(4.1) I1=0

I

4+ o

€
2 vk[xo.to],

éd > 0.

Identification of the action function

[ ]
and v

I, the unique viscosity solution of

in R" x (0,®)
on Go x {0}

on (Rn-ﬁo)x(O} .
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First we show

(4.2) vg 2 1 in R” x (0,).
For this choose any constant u > 0 and any function ¢ € Cm(Rn) satisfying

- n -
{ £=0 onGy, {>0o0n R -G,

05 <1,
Consider now the auxiliary problem

min(I  +H(DI ),1 ) =0 in R" x (0, )
(4.3)

1“ = ue on R" x (0,m) ,

which has a unique, continuous solution according to [6]. Furthermore,

according to assertion (i1) in Proposition 3.1 we have

(4.4) vzl on R” x {O}.

Finally, v, 1is lower semicontinuous, and

min(v,, + H(Dv,),v,) 20 in R" x (0,)

in the viscosity sense. Consequently a comparison argument

following (3] and [6] implies

> 1 in R" x (0, ).

Ve "

Letting u tend to infinity we have

1, > 1 in R" x (0,®);

and so (4.2) follows.

Next we assert that

(4.5) v 1 in R® x (0,w).
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To prove this define for each small & > O the smooth set
n
Gy = (xo € Goldist(x.R -Gy) > 8).
Fix & > 0 and write

(4.8) Ac E sup v‘(x.v) {c > 0).

xeG6

*
Since v is upper semlcontinuous and

v =0 on Gy x {0} ,
according to assertion (11) of Proposition 3.2, we see that

(4.7) 1im Av =0
o0

for each fixed & > 0. Choose some small o > O and consider the problem

min[ri'”+u(vla'”).15'°) =0 in R" x (o, ®)
(4.8) 16'¢ ) Aa on G6 x {0}
+o on (Rn-as)x(o} .

In view of Proposition 3.2 we have

. S,0

v <1 on R” x {o}

*
Since additionally v 1is upper semicontinuous and
- » - n
min(vt + HDv ),v) soO inR x (o,®)
in the viscosity sense, we have
in R” x (0, w).
Let o — 0 and recall (4.7) to discover
. ]

(4.9) v S1 on R® x (0,),

when I5 is the unique viscosity solution of
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min[I: +H1%),1%) = 0 in R® x (0, w)

s o] on G& x {0}
+

o on (n"-&a)x(O)
Now at last send & — 0: since

1% 51 in R® x (0, ),

we arrive at (4.5).

Combining (4.2) and (4.5) we have

. n
v ST <v, in R x (0,m).

But since the definitions imply obviously that

in R® x (0, w),

IA
<

we have

v = v, =1 in R™ x (0, ). (=]

Another approach to obtain the above is to modify (in a more or less
straight forward way) the results of M.G. Crandall, P.-L.Lions and P.E.

Souganidis [4] concerning maximal solutions.
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